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A lattice version of the Fokker-Planck equation, accounting for dissipative interactions, not resolved on the
molecular scale, is applied to the study of electrorheological transport of a one-dimensional charged fluid, and
is found to yield quantitative agreement with a recent analytical solution.
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Over the last decade discrete lattice versions of kinetic
equations, most notably the Lattice-Boltzmann �LB� method,
have undergone burgeoning progress for the simulation of
large scale hydrodynamic flows �1–4� and of the dynamics of
colloidal suspensions �5,6�. One of the major appeals of the
LB method is its flexibility, which allows us to accommodate
a host of complex physical effects, including boundary con-
ditions at interfaces, intermolecular forces, and even chemi-
cal reactions, through efficient and elegant discretizations of
the force term in the kinetic Vlasov-Boltzmann equation.
One of the limitations of the LB method is that, since it
generates the time evolution of the one-particle distribution
function, fluctuations are not accounted for. “Brownian
noise” becomes increasingly important as one explores flows
on ever smaller scales, as in colloidal systems, or in narrow
pores �microfluidics�. Here we show that the LB methodol-
ogy can be easily extended to deal with small scale processes
involving a Brownian component, by introducing a lattice
version of the Fokker-Planck �FP� collision operator �7,8�. In
analogy with the LB equation, the present lattice Fokker-
Planck equation builds upon an optimized form of impor-
tance sampling of velocity space which, at a variance with
numerical grid methods �8–10�, permits us to solve the
Fokker-Planck equation near local equilibrium in single-
particle phase space.

In this work an implicit solvent kinetic model is applied to
the problem of single-file ion transport through a water-filled
pore connecting two reservoirs, under the action of an ap-
plied electric field or ion-concentration gradient. The one-
dimensional kinetic model provides a crude representation of
ion permeation of ion channels through membranes separat-
ing intra- and extra-cellular compartments �11,12�. Ion per-
meation of such channels has been examined by numerous
molecular dynamics or Brownian dynamics simulations of
realistic or semirealistic quasicylindrical models �for a re-
view, see �13�� or by numerical solutions of the Poisson-
Nernst-Planck equations �14�, but the present study is in-
spired by the recent kinetic modeling of Ref. �12�. The action
of the confining, quasicylindrical pore is crudely represented
by restricting ion motion to one dimension and by a contri-
bution to the frictional force −�v.

In one dimension, the time evolution of the distribution

function f = f�x ,v ; t� of a given particle is governed by the
Fokker-Planck equation

��t + v�x�f = CFP�f� − a�vf = �v���vf + vT
2�vf�� − a�vf ,

�1�

where vT=�kT /m is the thermal velocity and a=qE /m, E
being the applied electric field and q the charge of the ions;
in practice one is mostly interested in mono or divalent cat-
ions �q= +e or +2e�. The local equilibrium solution of the
kinetic equation �1� is hence

feq�x,v;t� = �n�x;t�/�2�vT
2�1/2�e−�v − u�x ; t��2/2vT

2
. �2�

The zeroth, first, and second moments of the distribution are
the local density n, current J, and pressure �or momentum
flux� P per unit mass and are given by

n�x;t� = �
−�

�

f�x,v;t�dv , �3�

J�x;t� = �
−�

�

vf�x,v;t�dv � n�x;t�u�x;t� , �4�

P�x;t� = �
−�

�

vvf�x,v;t�dv . �5�

Note that in one dimension the momentum flux is propor-
tional to the �kinetic� energy, but this is, of course, no longer
true in higher dimensions.

By multiplying both sides of the kinetic equation �1�
successively by 1, v, and v2, and integrating over all v, one
easily arrives at the following macroscopic moment
equations:

�tn�x;t� + �xJ�x;t� = 0, �6�

�tJ�x;t� + �xP�x;t� = − �J�x;t� + n�x;t�a , �7�
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�tP�x;t� + �xQ�x;t� = − �n�x;t�u2�x;t� + 2aJ�x;t� . �8�

Equation �6� is the continuity equation expressing the con-
servation of mass; Eq. �7� expresses momentum balance with
a proper account of friction and acceleration due to the elec-
tric field while �8� is the energy balance equation, taking into
account the heat flux Q�x ; t�=�−�

� v3f�x ,v ; t�dv as well as
frictional dissipation.

Many analytical and numerical procedures are available
to solve the moment equations �6�–�8�, �8�. In the following,
however, we concentrate on a discrete kinetic representation
of the distribution function f�x ,v , t� in which the space-time
dependent fields f i�x , t�, rather than being obtained through
an integration over velocity degrees of freedom, retain in-
stead a local meaning in velocity space. The space-time evo-
lution of these discrete fields is governed by the following
lattice-Fokker-Planck �LFP� equation �15�:

f i�x + vi�t;t + �t� − f i�x;t� = 	
j

cij�x;t�f j�x;t��t . �9�

In the above f i�x ; t� is the probability of finding a particle
with discrete speed vi at point x and time t, and

cij�x;t� = wi	
k

AkiCk�x;t�Akj �10�

is a collision matrix between discrete populations f i and f j.
The quantities Aki are orthonormal eigenvectors associated
with the Hermite polynomials hk�v� �see Appendix� and Ck

are the spectral coefficients of the FP operator, defined as

Ck�x,t� =� CFP�f�x,v;t��hk�v�dv . �11�

Finally, �t is the time step chosen for the numerical solution.
We consider a discretized model involving three discrete

velocities v0 ,v1 ,v2=0 , +1,−1 and associated weights
w0 ,w1 ,w2= 2

3 , 1
6 , 1

6 , with thermal speed vT
2 = 1

3 . For this model,
from �11�, one readily computes C0=0, C1=−�J+na and
C2=−2��P−nvT

2�+2aJ.
Equation �9� corresponds to a first-order time integration

of the corresponding time-continuous discrete Fokker-Planck
equation, along the characteristics �xi=vi�t. The formula-
tion of second-order time-marching schemes along the lines
developed for the case of diagonal matrices, such as the lat-
tice Bhatnagar-Gross-Krook equation, is left for future work
�16,17�. A thorough Chapman-Enskog analysis of the macro-
scopic limit of Eq. �9� will be presented in a forthcoming
detailed publication �18�. As an application of the LFP for-
malism, we consider the single-file transport of ions through
a pore of length L connecting two reservoirs containing ions
at given concentrations. As in Ref. �12� we assume that at
both ends of the pore, the ion distribution function is a
Maxwell-Boltzmann equilibrium distribution at temperature
T which determines the thermal velocity vT. The analytical
solution for this case is given by

nexact�x� = Aea*x/L + B ,

Jexact = aB/� ,

where

A = �1/2 sinh�a*/2���nr − nl + �a*/�*��2�B� ,

B = nle
a*/2 − nre

−a*/2/
2 sinh�a*/2�e−a*2/2�*2

+��

2

a*

�*�cosh�a*/2� + sinh�a*/2��
−vTa*/�*

vTa*/�*

dv ��v��
 ,

and �=�1/2�vT exp�−v2 /2vT
2�. It should be appreciated

that, even though the solution is a plain exponential, the
competition between the effect of the boundary conditions
and the driving electric field is reflected in a strongly nonlin-
ear dependence of the current on the electric field �see the
expression of B, which represents corrections to pure Ohmic
behavior�. This competition leads to a saturation, since the
reservoirs cannot feed more than nvT ions per unit area and
time. As a result, the current cannot exceed its ballistic value
vTn /�2� in the limit E→�.

Numerical boundary conditions are imposed as follows:

f1�x = 0;t� = f2�x = 0;t� = �nl − f0�x = 0;t��/2,

f0�x = 0;t� = w0nl, �12�

where subscripts 1 and 2 stand for rightward and leftward
propagation and nl indicates the left reservoir density. At the
right-end reservoir, open flow conditions are applied. The
reservoirs are located at x=0 and x=L+1, respectively, while
the physical channel runs from 1�x�L. Note that the ex-
pression �12� corresponds to fixing the incoming flux from
the reservoir, hence it does not imply that nl coincides with
the fluid density at the inlet.

We define the dimensionless current J*=J�2� /vT
21 /n the

dimensionless acceleration, or electric field a*=maL /kBT
=qEL /kBT=E /ET and the dimensionless collision rate �*

=�L /vT=� /�T=E� /ET where n is the reservoir ion density,
ET=kBT /qL is a “thermal” electric field, such that the work it
produces to move a charge q over the channel length L
equals the thermal energy kBT, while E�=�kBT / �qvT�
=m�vT /q is the electric field producing on a charge q a force
which balances the frictional force −m�vT. In other words, in
a linear regime, the drift velocities associated with ET and E�

are uE=vT /�* and uE=vT, respectively. Clearly, in infinitely
long channels, or zero-temperature fluids, uT→0, and the
ionic current is controlled by pure dissipation, uE=qE /m�.
In finite-size, finite-temperature situations, and constant-flux
boundary conditions, however, deviations from this simple
Ohmic regime must be expected, as we shall show below.

We have solved the LFP equation numerically to deter-
mine the stationary distribution function f�x ,v� and derive
the corresponding macroscopic moments, primarily the
current J�x�. In Fig. 1 the steady-state currents vs the
field strength are shown for three values of the friction
�*=20,50,100, over a wide range of field amplitudes a*, and
compared with the analytical solution. The simulation is per-
formed with nl=nr=1 and N=10 000 grid points. From this
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figure, excellent agreement with the analytical solution �solid
line� is appreciated not only in the linear Ohmic regime, but
also in the strongly driven �a*�1� regime, where saturation
effects dominate. We also note that the satisfactory agree-
ment extends to the highly damped ��*�1� regime relevant
to nanofluidic applications. However, the full asymptotic
limit, corresponding to an infinite drive, is never attained. In
this regard, we observe that the maximum driving electric
field is subject to a numerical stability constraint of the form
a�t /�x2	1, namely a*	3N, N=L /�x being the number of
lattice sites in the simulation and vT

2 = 1
3 in lattice units. By

the same argument, the damping rate is subject to the stabil-
ity constraint ��t	2, namely �*	2N. In view of these es-
timates, we observe that the present three-speed scheme still
operates well below its linear stability limits. This is prob-
ably due to a combination of factors, that is, a limited num-
ber of discrete speeds, first-order time marching, as well as
nonoptimized boundary conditions �see below�.

Inspection of the �exponential� density profiles shows that
the maximum error relative to the analytical solution is in-
variably associated with the density profile in the outlet
layer, L�1−1/a*�
x
L, where most of the spatial change
takes place. This error is found to go from just a few percent
for a*�O�10�, up to 20% in the strongly driven regime,
a*�O�100�. This is probably caused by the representation of
the reservoirs by a single lattice point. The consequences
of a less abrupt treatment of the boundaries will be explored
in the future. The global error, measured in L2 norm,
E2���=��1/N�	x=1

N ���x�−�exact�2 �and the same for the cur-
rent J�, shows a quadratic dependence for the density and
intermediate linear-to-quadratic dependence for the current
�see Fig. 2�. Note that the absolute value of the errors re-
mains acceptable.

In conclusion, the lattice FPE has been applied to the
study of electrorheological transport of a one-dimensional
charged fluid, and found to yield satisfactory agreement with

a recent nontrivial analytical solution. In particular, the lat-
tice FPE proves capable of predicting the saturation effect
resulting from the nonlinear interaction between the electric
field and the constant-flux boundary conditions imposed by
the presence of equilibrium reservoirs at the channel bound-
aries. The present lattice FPE extends straightforwardly to
higher dimensions and it might prove useful for the numeri-
cal investigation of more complex situations, such as hetero-
geneus channels with kinetic traps, and/or multicomponent
fluids, for which analytical solutions are no longer available.
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APPENDIX A: DERIVATION OF THE LATTICE-FOKKER-
PLANCK EQUATION

The lattice version of the kinetic equation �1� has been
derived in a recent work �15�, and therefore only the basic
steps of the main procedure are reported here. The distribu-
tion function is expanded onto a Hermite basis

f�x,v;t� = 	
k=0

K

Fk�x;t�hk�v�w�v� , �A1�

where w�v�= �2�vT
2�−1/2e−v2/2vT

2
is the one-dimensional Her-

mite weight function, while hk�v� is the Hermite polynomial
of order k. By substituting Eq. �A1� into the kinetic equation
Eq. �1�, and projecting upon the Hermite basis, one arrives at
the moment equations

FIG. 1. Reduced current J* as a function of the reduced applied
field a*=E /ET. Circles, squares, and diamonds correspond to
�*=20, 50, and 100, respectively. Solid lines are the theoretical
predictions for the three values of �*. The grid size is N=10 000.

FIG. 2. The L2 error of the numerical vs the analytical solution
for the density and current, respectively, as a function of the number
of grid points N at a given channel length L. The main parameters
are a*=100 and �*=100. The dashed lines correspond to N−1 and
N−2 convergence.
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�tFk�x;t� + �xGk�x;t� = Ck�x;t� , �A2�

where

Fk�x;t� = �
−�

�

f�x,v;t�hk�v�dv , �A3�

Gk�x;t� = �
−�

�

vf�x,v;t�hk�v�dv , �A4�

Ck�x;t� = �
−�

�

CFP�f�x,v;t��hk�v�dv , �A5�

CFP being the linear FP operator.
The next step is to evaluate the kinetic moments Fk, Gk,

and Ck by the Gauss-Hermite quadrature. Noting that
f�x ,v ; t� /w�v� is a polynomial in v, the quadrature reads

Fk�x;t� = 	
i=0

G−1
f�x,vi;t�

w�vi�
wihk�vi� , �A6�

where vi and wi are the nodes and weights of the quadrature.
We observe that Eq. �A6� is exact for polynomials of degrees
up to �2G+1�, so that, in principle, the lattice Fokker-Planck
equation is equivalent to a system of G+1 moment equa-
tions.

Expressions similar to Eq. �A6� hold for Gk and Ck. Sub-
stituting these into Eq. �A2�, and equating the coefficients of
hk�vi� on both sides of the resulting sum, one obtains the
following set of equations

�t f i�x;t� + vi�xf i�x;t� = ci�x;t�, 0 � i � G − 1. �A7�

where the following identifications have been made

f i�x;t� � f�x,vi;t�wi/w�vi� , �A8�

ci�x;t� � CFP�f�x,vi;t��wi/w�vi� . �A9�

The discrete collision operator is entirely specified by the
coefficients ci defined by Eq. �A9�. These can be computed
from the spectral decomposition of the continuous operator
CFP�f�x ,v ; t�� similar to Eq. �A1�, i.e.,

CFP�vi� � CFP�f�x,vi;t�� = 	
k=0

K

Ck�x;t�hk�vi�w�vi� .

�A10�

Knowledge of the spectral coefficients Ck�x , t� allows the
discrete coefficients ci�x ; t� in Eq. �A9� to be calculated,
thereby providing an operational definition of the discrete FP
operator. To this purpose, we write

Ck�x,t� = 	
l

CklFl�x,t� , �A11�

where the coefficients

Ckl = �
−�

�

dvhk�v�CFPw�v�hl�v� �A12�

provide the matrix representation of the collision operator
CFP in the Hermite basis set �not necessarily in diagonal
form�. By substituting �A11� and �A12� into �10�, taking into
account the relations �20�–�22�, and writing ci=	 jcij f j, we
finally obtain

cij = wi	
kl

AkiCklAlj , �A13�

where Aki=hk�vi� /Hk are orthonormalized eigenvectors stem-
ming from the Hermite polynomials �Hk

2=	iwihk�vi�hk�vi��.
Specific values of Aki for practical implementations can be
found in �17�.
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